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Abstract. We present atomic-scale computer simulations in equiatomic L10-CoPt where Molecular Dynam-
ics and Monte Carlo techniques have both been applied to study the vacancy-atom exchange and kinetics
relaxation. The atomic potential is determined using a Tight-Binding formalism within the Second-Moment
Approximation. It is used to evaluate the different saddle-point energies involved in a vacancy-atom ex-
change between nearest-neighbour sites. The potential and the saddle-point energies have been used to
simulate the relaxation of the long-range order in CoPt using a Monte Carlo technique. A vacancy mi-
gration energy of 0.73 ± 0.15 eV and an order-disorder transition temperature of 935 K have been found.

PACS. 61.43.Bn Structural modeling: serial-addition models, computer simulation – 64.60.Cn
Order-disorder transformations; statistical mechanics of model systems – 66.30.Fq Self-diffusion in metals,
semimetals, and alloys

1 Introduction

Ordering kinetics in intermetallic compounds have been
the topic of many experimental and theoretical works. Sys-
tems presenting a phase diagram derived from the Au–Cu
canonical phase digram are among the most studied. Ow-
ing to their high magnetic anisotropy, some of them in the
iron-group metals and platinum group metals are of out-
standing technological importance [1–5]. A good knowl-
edge of the ordering process and its dynamics is thus
a necessary step in any extensive research on these sys-
tems. Among the energetic parameters that drives diffu-
sion, the saddle-point energies and the migration energies
are generally less known and hard to measure in ordered
intermetallic compounds. In pure metals and random al-
loys, the migration energy can be deduced, for example,
from stage III of resistivity recovery during annealing af-
ter low-temperature irradiation [6] or thorough analysis
of residual resistometry along isothermal and isochronal
annealing series [7,8]. Those two methods are, however,
very sensitive to the microstructure of the samples and
to any impurities or defects. Based on the earlier work of
Flynn [9], Schober et al. [10] have proposed a model for de-
termining the migration energy from the phonon density
of states in pure fcc and bcc metals. This model has been
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extended latter on to AB3 compounds with L12 struc-
ture [11]. A prerequisite for such a determination is the
knowledge of the phonon dispersion at different tempera-
tures and states of order. In parallel to these experimen-
tal approaches, computer simulations, based on Molecular
Dynamics (MD) and Monte Carlo (MC) techniques, allow
one a wide range of kinetics relaxation problems and ther-
modynamic properties to be studied. Offering a possibil-
ity for investigating atomic migration in terms of crystal
energetics treated by means of advanced solid-state theo-
ries, MD simulations are, however, technically limited to
rather small samples and short periods of real time. Con-
sequently, being very powerful when considering the dy-
namics of single atoms in a solid [12], the method is less
useful for studying net kinetic effects such as, e.g., long-
range order (LRO) relaxation. Most of simulation studies
of structural kinetics are thus carried out by means of
the MC technique (for references see numerous works of
Binder, e.g., Ref. [13]). Crucial for the success of any sim-
ulation, the interatomic potential can be deduced from
first-principle MD, providing an accurate description of
the atomic interactions, but requiring enormous computa-
tional time and a limited number of particles. To a great
extent, this limitation can be overcome by using empiri-
cal or semi-empirical potentials which have the advantage
of reproducing fast and with satisfying accuracy the ther-
modynamic and structural properties of materials. Very
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satisfying results have been obtained, in this way, in tran-
sition metals and alloys [14,15].

The Co-Pt system has interested many researchers
from a practical viewpoint as providing catalyst materi-
als [16], but from a basic viewpoint as a magnetic system
with a coupling between chemical and magnetic order-
ing [17–19]. Around the 50/50 stoichiometry, CoPt or-
ders in the L10 structure, made of alternating pure cobalt
and platinum (001) planes [20]. This very anisotropic
chemical order is accompanied by a strong magnetic
anisotropy and a tetragonality (c/a < 1). The pronounced
anisotropic properties of CoPt are at the core of the
present renewed interest in this system [21–23]. In thin
films, L10-CoPt alloys display, in addition to a high mag-
netic anisotropy, a magnetisation that is perpendicular to
the film surface, thus making such films good candidates
for magneto-optical-storage devices [24]. This system has
been studied extensively to understand the origin of the
asymmetry in its phase diagram. Various explanations
have been proposed: for example, an effect of many-body
interactions [19], an influence of magnetism, and varia-
tions of atomic interaction with composition [25,26]. Cal-
culation of this phase diagram may appear quite simple
a priori, as it is based on the fcc lattice at almost all
temperatures and compositions, but it still remains a chal-
lenge today. The kinetics of atomic ordering in the ordered
phases in this system has also been studied. The activation
energy of changes in chemical LRO has been determined
by resistivity measurements to be 3.18 eV and 2.52 eV for
CoPt3 [27] and CoPt [28] respectively.

It is well known, that the vacancy-driven mecha-
nism, namely, the vacancy-atom jump between nearest-
neighbours sites, is the dominant microscopic process of
diffusion in dense phases [29]. During such a jump, the
energy barrier formed by the nearest-neighbours that the
jumping atom has to overcome for completing the jump
plays an important role. In this paper, we present MD
simulations based on the Tight-Binding Second Moment
Approximation (TB-SMA) formalism [30], which is well
adapted to transition metals and alloys [31], to calcu-
late the saddle-point energies for the different kinds of
atomic jumps. The calculated saddle-point energies will
be used, in conjunction to the potentials deduced from
the TB-SMA, to simulate the LRO relaxation in CoPt
and deduce the migration energy using a MC technique.

2 Saddle-point energies calculation

In this section, we present the many-body potential and
its parametrisation procedure. Once well defined, the po-
tential will be used to simulate the atom-vacancy jump
mechanism and deduce the energy barriers for the differ-
ent kinds of atomic jumps to a nearest-neighbour vacancy
in the L10-CoPt structure in the case of a rigid and a
relaxed lattice.

The potential we have used is based on the approach
proposed by Rosato et al. [15,32,33] where the energy
Ei of an atom at site i, derived in the TB-SMA formal-
ism [30], is written as the sum of two terms; an attractive

band energy (Eb
i ) and a repulsive pair interaction term

(Er
i ). The band term is obtained by integrating the local

density of states up to the Fermi level [34], this gives rise to
the many-body character of the potential necessary to ac-
count for surface relaxations and reconstructions whereas
the repulsive term is described by a sum of Born-Mayer
ion-ion repulsions. When replacing the realistic density of
states by a schematic rectangular one having the same
second-moment [15], one obtains:
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I and J indicate the chemical species Co or Pt. ξIJ is
an effective hopping integral and qIJ describes its de-
pendence on the relative interaction distance. pIJ is re-
lated to the bulk modulus of the alloy under consider-
ation. In our case rII

0 is the first-neighbour distance in
the metal I. rIJ

0 as a free parameter and it is differ-
ent from the first-neighbour distance rIJ

0 =(rII
0 + rJJ

0 )/2.
rij is the distance between atoms at sites i and j. Eb

i and
Er

i are cancelled beyond a cut-off radius rc which has
been chosen as the second-neighbour distance. From rc

up to the (Co-Co) third-neighbour distance, the poten-
tial is linked up to zero with a fifth-order polynomial in
order to avoid discontinuities, both in the energy and
in the forces. The TB-SMA potential applied to inter-
metallic compounds gives very reliable results with inter-
actions up to the second nearest-neighbours as long as
intermediate and low-temperature ranges are considered.
Long-range interactions are required in order to reproduce
high-temperature properties which are usually beyond the
capability of short-range potentials. Considering the tem-
perature range (600–980 K) and the goal of our simula-
tions, the approximation of interactions up to the second
nearest-neighbours is rather justified. Furthermore, X-ray
and neutron diffuse scattering measurements have been
used in conjunction with inverse cluster variation method
to calculate the effective pair interactions in L12-Co3Pt
and in L12-CoPt3 [25,26]. In both systems the first and
second interactions are the predominant ones. The same
calculations are now in progress in equiatomic CoPt [35].

The potential parameters ξIJ , AIJ , pIJ and qIJ are
a priori unknown and will be determined by fitting the
potential to the universal equation of state driving the
variation of the potential with distance [14]. This proce-
dure requires usually the knowledge of the cohesive en-
ergy, lattice parameters and bulk modulus of the system.
We have taken these parameters from the literature [36].
We aimed during the fit to reproduce correctly the for-
mation energies and the lattice parameters of the ordered
L10 and the disordered A1 phases of CoPt.

The final parameters of the potential are summarised
in Table 1. In Table 2, we report together the calculated
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Fig. 1. The two possible atomic jumps, in-plane and out-of-
plane, of the Pt atom.

Table 1. Potential parameters of inter-atomic interactions de-
duced from the TB-SMA. The interaction parameters between
Co-Co and Pt-Pt are taken from the literature [36].

Interaction A (eV) ξ(eV) p q
Pt-Pt 0.242 2.506 11.14 3.68
Co-Co 0.189 1.907 8.8 2.96
Pt-Co 0.175 2.115 9.412 2.812

Table 2. Reduced lattice parameters, calculated (Ecal) and
experimental (Eexp) formation energies of the ordered L10 and
disordered A1 phases. In L10 phase, the results obtained by
varying a, c, and both a and c simultaneously are shown. We
have used a0 = 3.806 Å, c0 = 3.684 Å for the L10 phase and
a0 = 3.751 Å for the A1 phase.

Ecal (eV) Eexp (eV) a/a0 c/c0

L10 (varying a) –0.133 –0.14 0.99
L10 (varying c) –0.142 –0.14 0.97

L10 (varying a and c) –0.138 –0.14 0.995 0.995
A1 (varying a) –0.086 –0.10 1

lattice parameters and the formation energies and com-
pare them to the experimental data. A good agreement is
achieved for both ordered L10 and disordered A1 phases.
We have attempted to parameterise the TB-SMA poten-
tial for the L12-CoPt3 phase but a discrepancy of more
than 40% appeared between the experimental and the cal-
culated formation energies. For this reason, further calcu-
lations, aiming at the determination of the saddle-point
energies, have been restricted to the L10 phase.

In order to calculate the saddle-point energies, we have
used a simulation box containing 103 L10 fcc-based cells.
In accord to the L10 structure, there are as many Co as
Pt atoms arranged on (001) alternating crystallographic
planes of pure Co and Pt using periodic boundary con-
ditions in the three space directions. The total energy
of the system, containing a single vacancy, was moni-
tored during the four kinds of atomic jumps to a nearest-
neighbour vacancy in the case of a rigid and a relaxed
lattice: Co to Co-site vacancy (Co→Co(V)), Co to Pt-site
vacancy (Co→Pt(V)), Pt to Pt-site vacancy (Pt→Pt(V))
and Pt to Co-site vacancy (Pt→Co(V)). In Figure 1 we
represent the two possible jumps of a Pt atom toward a

Table 3. Calculated saddle-point energies in eV for the differ-
ent kinds A→B(V) jumps of an atom A on a vacancy site B in
the case of a rigid (ε) and a relaxed lattice (εR).

Co→Co(V) Co→Pt(V) Pt→Pt(V) Pt→Co(V)
ε 0.49 0.41 0.54 0.39

εR 0.39 0.34 0.42 0.31

vacancy situated either in the same plane (Pt→Pt(V))
or in a neighbouring plane (Pt→Co(V)). In the case
of a relaxed lattice, we have used a Tight Binding-
Quenched Molecular Dynamics-Second Moment Approx-
imation (TB-QMD-SMA), which allows us to determine
the equilibrium structure of a system with a finite num-
ber of particles at T = 0 K, by integrating the equation of
motion [37]. The quenching procedure, in which the veloc-
ity vi of an atom i is cancelled when the product Fi(t)vi(t)
is negative, leads to the minimisation of the potential en-
ergy at 0 K [38]. Fi being the force acting on the atom i,
calculated in the extended tight-binding formalism from
the total energy [34]. The positions were integrated by
means of the Verlet algorithm [39]

For all atomic jumps, the total energy follows a smooth
cosine curve, with a maximum close to half-way between
the initial and destination lattice sites. In the case of the
cross jumps, Co→Pt(V) and Pt→Co(V), a shift in the to-
tal energy, associated to the formation of an anti-site de-
fect, was observed at the final position. The saddle-point
energies have been deduced from the evolution of the total
energy for the different kinds of atomic jumps. The results
obtained with and without relaxation are reported in Ta-
ble 3. The saddle-point energies are denoted εR and ε for
the relaxed and the non-relaxed lattice respectively. The
amplitude of the saddle-point energies may be explained
by the size effect and the atoms forming the barrier of first-
nearest neighbours that the jumping atom has to overcome
for completing the jump. For instance, the largest value is
obtained in the case of Pt→Pt(V) jump, when the bigger
Pt atom is involved in the jump. In the case of the cross
jumps, Co→Pt(V) and Pt→Co(V), the atomic structure
of the barrier to overcome being the same for the two
jumps, the corresponding saddle-point energies are very
close. Furthermore, the lattice being softer when relaxed,
the saddle-point energies, are as expected, smaller when
the relaxation is taken into account.

3 Monte Carlo simulations

3.1 Simulation method

MC simulations have been established as a useful tool for
studying order-order and order-disorder relaxation kinet-
ics in intermetallics [40–42]. In contrast to earlier stud-
ies, based on effective pair interaction energies expressed
within a simple Ising-Hamiltonian, we go in the present
work beyond the pair approximation by implementing the
many-body potential deduced from the TB-SMA and tak-
ing into account the saddle-point energies calculated in the
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previous section to simulate the disordering process of a
perfectly ordered L10-CoPt structure. The purpose of the
simulation is to prove whether the interaction model is
appropriate and to get an estimation of the vacancy mi-
gration energy which is an important energetic parameter
that drives diffusion and ordering process in intermetallics.

In view of recent neutron diffuse scattering measure-
ment in equiatomic CoPt [35] which show a symmetric dis-
tribution of the diffuse intensity around the 100 and equiv-
alent points in the reciprocal lattice, signature of a highly
stable L10 phase with very small static displacements, we
have chosen to carry on the MC simulations using a rigid
lattice. We have used a model based on the vacancy-atom
jump mechanism between nearest-neighbour sites, which
is the realistic microscopic process in dense phases [29].
The simulation box contains 323 L10 fcc-based cells with
linear periodic boundary conditions. The simulation starts
with a perfect L10 ordered crystal in which one of the
two sublattices (sublattice α) is occupied by Co atoms
and the other (sublattice β) by Pt atoms. To not affect
the static properties and avoid interaction effects, a sin-
gle vacancy is introduced at random in the crystal. The
elementary MC step is the following: one of the vacancy
neighbours (Co or Pt atom) is randomly chosen, the en-
ergy balance ∆E of the atom-vacancy exchange before and
after the jump is evaluated. The jump is performed if the
Glauber probability P (∆E) = PG(∆E) exp(−ε/kBT ) is
larger than a random number between 0 and 1. PG(∆E) =
[1 + exp(∆E/kBT )]−1 is the Glauber probability [43] and
ε is the saddle-point energy for the corresponding jump.
This corresponds to averaging the result over a large num-
ber of reversal jump attempts, the sum of the probabilities
of the jump and its reversal being equal to 1.

The configuration of the system was analysed, at reg-
ular time intervals, by calculating the LRO parameter
η = 2(2Nα

Co − NCo)/(Nsites − 1), where Nα
Co is the num-

ber of Co atoms on the α sublattice and NCo the total
number of Co atoms. The time scale being the number
of jump attempts. For each temperature, the evolution
of η is followed until the system reaches equilibrium. We
have chosen to stop when the simulation time was at least
longer than 5 times the relaxation time of the system.

3.2 Results and discussion

Isothermal relaxations of η have been recorded in the tem-
perature range from 600 to 980 K. An example of kinetics
relaxation is shown in Figure 2. According to the path
probability method [44], corroborated by many experi-
mental results [45–49], the isothermal relaxation of the
LRO parameter in intermetallics is well fitted with two
exponentials, yielding a long and a short relaxation times,
corresponding to the slow and the fast processes, respec-
tively. This result is well established in L12 phase for which
a detailed study has shown that the fast process is re-
lated to the formation of the nearest-neighbour antisite
pairs, whereas the slow one is related to the uncoupling
of these antisite pairs [40]. Due to the difference in struc-
ture, the process must be different in the L10 phase and
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Fig. 2. Isothermal relaxation of η obtained for T = 880 K
(black circles) and its simulation using a single exponential
(white line).
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Fig. 3. Arrhenius plot of the relaxation times. The linear re-
gression gives the migration energy EM = 0.73± 0.15 eV. The
open circles show the data points which have been excluded
from the linear regression.

the interpretation is still under investigation. However, re-
cent MC simulations of the LRO relaxation in L10-FePd
showed that the fast process is highly predominant (up
to 90%) below the order-disorder transition [50]. In view
of these results and considering the temperature range of
our simulations, we have chosen to fit the kinetics using
a single exponential yielding a single relaxation time τ
which fulfils an Arrhenius law with a positive migration
energy EM = 0.73±0.15 eV (Fig. 3). The relaxation times
are typically in the order of 1012 MC steps, significantly
higher than the relaxation times obtained without saddle-
point energies. The data points on the left side of Figure 3,
plotted in open circles, show a clear departure from the
straight line, they are synonym of a critical slowing down
close to the order-disorder transition and have been ex-
cluded from the linear regression.

The vacancy formation energy EF has been measured
in pure Co and pure Pt, it has been found equal to 1.38 eV
and 1.2 eV for Co and Pt respectively [51]. Assuming that
the activation energy EA is the sum of EM and EF , the
calculated value of EA obtained considering the simulated
value of EM and an average value of EF compares well to
the activation energy of 2.52 eV, measured in equiatomic
CoPt by means of resistivity measurements [28]. Normal
modes of vibration in equiatomic CoPt have been recently
measured by inelastic neutron scattering [52]. The phonon
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density of states has been used to calculate the migra-
tion energy using Schober’s model. A value of 0.85 eV
was found in the fcc-disordered state at 1120 K. Despite
of the difference in the state of order between the simu-
lated CoPt system and the measured one, the qualitative
agreement is quite satisfactory. In our knowledge no fur-
ther measurement of the migration energy in equiatomic
CoPt are available. Nevertheless, qualitative comparison
to CoPt3, in which the migration energy was calculated
using both Schober’s and Flynn’s models, can be made.

Schober’s model initially developed for bcc and fcc
pure metals [10] has been extended to the A3B compounds
with L12 structure [11] and applied to CoPt3 [53]. Aver-
aging the values of the migration energy over the differ-
ent kinds of atomic jumps, we get a migration energy of
1.3 eV at 300 K. Flynn’s model [9] was applied to CoPt3
using the elastic constants deduced from the slope of the
phonon dispersion curves at the center of the Brillouin
zone [53]. A migration energy of 0.95 eV was found in
the fcc-disordered state at 1060 K. The difference in the
amplitude between the calculated value of the migration
energy in CoPt and the values deduced from Schober’s
and Flynn’s models in CoPt3 might be explained by the
atomic mass and size effects. As expected, an increase in
the migration energy with the atomic density is observed
between the L10 and L12 phases of Co–Pt system. The
atomic density is nearly 25% lower in CoPt than in CoPt3.

The variation of the equilibrium LRO parameter ηeq

as a function of temperature is shown in Figure 4. The
order-disorder transition takes place between 930 and
935 K. The transition region has been crossed with 5 K
temperature steps. It should be noted that the value of
this temperature is close to the value obtained in the
L10 compounds using phenomenological pair interaction
energies [54] but it is 15% lower than the experimental
value of the order-disorder transition temperature Tc in
equiatomic CoPt (1110 K) [55]. Nevetheless, the general
agreement between the simulated and the experimental
Tc is quite satisfactory. In fact, the MC model, which as-
sumes temperature independent potentials and does not
take into account anti-phase domains, only gives an esti-
mate of Tc. Indeed, recent X-ray diffraction and transmis-
sion electron microscopy measurements in CoPt showed
that the ordering transformation involves formation of an-
tiphase boundaries and twin bands [17].

4 Conclusion

An approach for determining the parameters of a many-
body potential in equiatomic CoPt using the TB-SMA
has been presented. The potential was used to deter-
mine the saddle-point energies for the different kinds of
nearest-neighbour atom-vacancy jumps in the case of a
rigid and a relaxed lattice. The calculated energy barri-
ers have been used together with the many-body poten-
tial to simulate the LRO relaxation in L10-CoPt struc-
ture using a MC technique. A vacancy migration energy
of 0.73±0.15 eV has been deduced from the Arrhenius plot
of the relaxation times. A lack in experimental data of the
migration energy in the ordered state of the equiatomic
CoPt made possible only qualitative comparisons to ei-
ther the disordered state of CoPt data, when available,
or to CoPt3 data. Finally, the order-disorder transition
temperature has been determined from the isothermal re-
laxation of the LRO parameter. The simulated value is in
a satisfactory agreement with experiment.
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henex and Dr. Pierron-Bohnes who provided us with the initial
MD code.

References

1. G.R. Harp, D. Weller, T.A. Rabedeau, R.F.C. Farrow,
M.F. Toney, Phys. Rev. Lett. 71, 2493 (1993)

2. A. Cebollada, D. Weller, J. Sticht, G.R. Harp, R.F.C.
Farrow, R.F. Marks, R. Savoy, J.C. Scott, Phys. Rev. B
50, 3419 (1994)

3. O. Ersen, V. Parasote, V. Pierron-Bohnes, M.C. Cadeville,
C. Ulhaq-Bouillet, J. Appl. Phys. 93, 2987 (2003)

4. V. Gehanno, A. Marty, B. Gilles, Y. Samson, Phys. Rev.
B 55, 12552 (1997)

5. P. Kamp, A. Marty, B. Gilles, R. Hoffmann, S. Marchesini,
M. Belakhovsky, C. Boeglin, H.A. Dürr, S.S. Dhesi, G. van
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Uetikon-Zürich, 2001), pp. 403–409

43. R.J. Glauber, J. Math. Phys. 4 (1963)
44. H. Sato, K. Gschwend, R. Kikuchi, J. Phys. C 7, 357 (1991)
45. C. Dimitrov, T. Tarfa, O. Dimitrov, in Ordering and

Disordering in Alloys, edited by A.R. Yavari, (Elsevier
Barking, 1992), p. 130

46. R. Kozubski, W. Pfeiler, Acta. Mater. 44, 1573 (1996)
47. H. Lang, H. Uzawa, T. Mohri, W. Pfeiler, Intermetallics

9, 9 (2001)
48. G. Sattonay, O. Dimitrov, Acta. Mater. 47, 2077 (1999)
49. A. Kulovits, W.A. Soffa, W. Püschl, W. Pfeiler Mater. Res.
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